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2 Instituto de Fı́sica Teórica, Universidade Estadual Paulista, UNESP, 01405-900 São Paulo,
Brazil

E-mail: vkbkota@prl.res.in

Received 25 November 2008
Published 13 March 2009
Online at stacks.iop.org/JPhysA/42/145201

Abstract

A statistical law for the multiplicities of the SU(3) irreps (λ, μ) in the reduction
of totally symmetric irreducible representations {m} of U(N ),N = (η + 1)

(η + 2)/2 with η being the three-dimensional oscillator major shell quantum
number, is derived in terms of the quadratic and cubic invariants of SU(3),
by determining the first three terms of an asymptotic expansion for the
multiplicities. To this end, the bivariate Edgeworth expansion known in
statistics is used. Simple formulae, in terms of m and η, for all the parameters
in the expansion are derived. Numerical tests with large m and η = 4, 5 and 6
show good agreement with the statistical formula for the SU(3) multiplicities.

PACS numbers: 21.10.Ma, 21.60.Fw
Mathematics Subject Classification: 20P05, 81R05, 62E20

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A statistical law for the multiplicities D(m,L) of the SO(3) irreps [L] in the reduction of
totally symmetric irreducible representations (irreps) {m} of U(N ) in U(N ) → SO(3), with
the basic association {1}U(N ) → ∑

i[�i]⊕, i.e. number of times the irrep L appears in {m} → L,
is well known [1, 2]. This has been derived both by using the ‘plethysm’ formulation of the
problem [3] and by using the SO(2) subgroup of SO(3) [1, 4]. Appendix A gives some
details of the second method as its extension is used in the present paper. The statistical law
for D(m,L), involving only the dimension (2L + 1) and the L2 eigenvalue L(L + 1), allows
one to estimate dimensions of Hamiltonian matrices in interacting boson models (IBMs) of
atomic nuclei [1, 2]. More importantly, by including energy dependence in the parameters
of D(m,L), this gives angular momentum decomposition of level densities, an application
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of great interest in nuclear physics [5–7]. As emphasized by Wybourne, deriving statistical
laws for multiplicities in the reduction of an irrep of G into irreps of K in G ⊃ K belong to
statistical group theory [3], a subject that is not well developed yet. Going beyond SO(3)

multiplicities, in the past [6, 8] there were some attempts to derive statistical laws involving
SU(3) and SU(4) algebras that appear in nuclear physics. However the formulae derived are
incomplete as discussed in detail below for SU(3).

Our purpose in this paper is to take a step forward in the subject of ‘statistical group
theory’ and derive the statistical law for the multiplicities of the SU(3) irreps (λ, μ) in the
reduction of a totally symmetric irrep {m} of U(N ),N = (η + 1)(η + 2)/2. This is equivalent
to developing a statistical theory for the plethysm

{η} 3⊗ {m} →
∑
(λ,μ)

D
(λ,μ)

{η},{m}(λ, μ), with {1}U(N ) → (η, 0)SU(3). (1)

The symbol ⊗ denotes (complete) plethysm while
3⊗ denotes a plethysm in which only the

Schur (S) functions with no more than three rows are considered. Note that given a U(3) irrep
{f1, f2, f3}, the corresponding SU(3) irrep is (λ, μ) with λ = f1 − f2 and μ = f2 − f3.
Equation (1) is relevant in physical applications [1, 2] since D

(λ,μ)

{η},{m} gives the number of times
that a given irrep (λ, μ) of SU(3) occurs when we distribute m bosons into the states of irrep
{η} of SU(N ); here η denotes 3D oscillator major shell number and η = 2(N = 6) for sd

IBM and η = 4(N = 15) for sdg IBM [9]. Also, as SU(3) represents deformed nuclei [9],
the D

(λ,μ)

{η},{m} will be useful in incorporating deformation effects in nuclear level densities [8].
For η = 2 one can use the result, due to Littlewood [10], that the (complete) plethysm

{2}⊗{m} consists of all Schur functions of degree 2m with even entries and multiplicities 1.
From this result it follows that

{2} 3⊗ {m} =
∑

(2(f1 − f2), 2(f2 − f3)), with f1 + f2 + f3 = m. (2)

For η > 2 the use of formulae given in section 2 allows one to compute {η} 3⊗ {m} for any η

and m. From these calculations one realizes that the number of multiplets (λ, μ) as well as
their multiplicities D

(λ,μ)

{η},{m} grow very fast with increasing η and m. For example, for η = 4
and m = 20 one has 566 multiplets with multiplicities as big as 3148 while for η = 5 and
m = 20 those numbers are 879 and 187 328. This justifies the search for a statistical law for
equation (1). Now we will give a preview.

In section 2, a summary of two exact methods for solving equation (1) is given. Also
discussed here are trivial zeros of D

(λ,μ)

{η},{m}. In section 3, as a starting point for developing

a statistical theory, D
(λ,μ)

{η},{m} is expressed as a trace over the m particle spaces involving the
quadratic and cubic invariant of SU(3) and this makes clear that D can be interpreted as a
bivariate density. An exact method (this is a third method besides the two methods discussed
in section 2) based on U(3) ⊃ U(1) ⊕ U(1) ⊕ U(1) chain allows us to derive asymptotic
expansions for the SU(3) multiplicities. This method, employed first by Kanestrom [8], is
formulated in detail in section 4. Here the joint distribution of the eigenvalues of γ = (Nz−Nx)

and ν = (Nx − Ny) for m bosons in an oscillator shell η (with Ni being number of quanta
in the ith direction) is considered and propagation equations are derived for the lower order
bivariate moments of this distribution. Approximating the distribution by a bivariate Gaussian
gives a statistical formula for D

(λ,μ)

{η},{m}. In section 5, formulae for the first two corrections are
derived and they result in a good asymptotic expression for Ds involving both the quadratic
and cubic invariants of SU(3). This is the main result of the paper. Some numerical tests of
the statistical formula are also given in section 5. Finally section 6 gives conclusions.
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2. Plethysm method for D
(λ,μ)

{η}, {m}

A general expression for plethysm of S-functions, by using equation (40) of [11], is

{η}⊗{f } = [r!]−1
∑

k

hkC
{f }
k ({η}⊗S1)

α({η}⊗S2)
β · · · . (3)

In equation (3), {f } is a partition (i.e. Young tableaux) of the integer r, k is a class of
the symmetric group of order r! and specified by the cyclic structure (1α, 2β, . . .), Si is a
symmetric function (power sum; see [11]), hk is the order of the class k and C

{f }
k is the

character of the class k corresponding to the partition {f }. The general result for {η}⊗Sr

restricted to irreps with maximum three rows is [12]

{η} 3⊗ Sp =
∑
a,b

[{ηp − ap, ap − bp, bp} − {ηp − ap, ap − bp − 1, bp + 1}

+ {ηp − ap − 1, ap − bp − 1, bp + 2} − {ηp − ap − 1, ap − bp + 1, bp}
+ {ηp − ap − 2, ap − bp + 1, bp + 1} − {ηp − ap − 2, ap − bp, bp + 2}] .

(4)

In (4) the summation is over all positive integers a and b with the constraint that all the
non-standard {f1, f2, f3} irreps to be ignored. With r = m and {f } = {m}, equations (3) and
(4) solve {m}U(N ) → (λμ)SU(3) by using the fact that C

{m}
k = 1 independent of k. This method

was used to get the Ds for η = 4,m � 15 in the past [4] and also for some examples with η = 5
[1]. It is useful to note that equations (3) and (4) can be used easily for antisymmetric irreps
{f } = {1m} as C

{1m}
k = ±1. Combining these with the result for expanding any S-function into

Kronecker products of symmetric or antisymmetric S-functions will generate the reductions
for any irrep of U(N ) into SU(3) irreps.

Another method for the exact calculation of the plethysm in equation (1) is given in [13]
and it uses the recursion formula [14]

{η}⊗{m} = 1

m

m∑
k=1

[∑
ν

Cη,k,{ν}{ν}
]

({η}⊗{m − k}); m � 2 (5)

with initial input {η}⊗{1} = {η}. The sum involving {ν} includes all partitions of ηk and
the coefficients Cη,k,{ν} have values 0, +1,−1. The value of Cη,k,{ν} is obtained removing, in
sequence, from the Young diagram associated with {ν}, ηk-border strips. If in all steps the
resulting diagram represents a standard partition then

Cη,k,{ν} = (−1)� (6)

with � = (number of lines in the removed k-border strips)−η. If in some step the resulting
diagram does not represent a standard partition then Cη,k,{ν} = 0. A k-border strip of a Young
diagram of a partition {ν} is a sequence of k squares in which the first of them is the last one
of the first line of {ν} and the next square to a given one is the one below it, if it exists, or the
one to its left, otherwise. If in all the steps of the recurrent process to obtain {η}⊗{m} given
by equation (5) one considers only the partitions {ν} with no more than p rows, one obtains a
p-reduced plethysm [15].

Using the exact methods, tabulations are generated for η = 4 with m = 1–48, for η = 5
with m = 1–26 and for η = 6 with m = 1–19. These are available upon request. Some of
these results are shown in figures 1–4. It is clear from these figures that the multiplicities are
very large for large m and hence the need for statistical laws. In order to have an insight on the
dependence of D

(λ,μ)

{η},{m} on λ and μ for given values of η and m, we used the results of exact

3
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calculations for {η} 3⊗ {m} to make a two-dimensional tabulation of D
(λ,μ)

{η},{m} with λ in the
rows and μ in the columns for η = 4 and 5 and m from 10 to 20. In these tabulations appear
sequences of zeros in straight lines of type λ = μ + X and in the upper right triangular region.

These zeros are not a peculiarity of {η} 3⊗ {m} but only a consequence of the definitions
λ = f1 − f2, μ = f2 − f3 and ηm = f1 + f2 + f3 where {f1, f2, f3} are the U(3) irreps that

appear in the expansion of {η} 3⊗ {m}. In fact, from these conditions, one obtains

λ = μ + 3(f1 + f3) − 2ηm,
(7)

λ + 2μ = ηm − 3f3.

These equations imply that

D
(λ,μ)

{η},{m} = 0 for

{
μ �= (λ + 2ηm)(mod 3)

λ + 2μ > ηm.
(8)

Also note that 2λ + μ = (2ηm) − 3k with k = 0, 1, . . . ,
[ 2ηm

3

]
and μ = k, k − 2, . . . , 0 or 1.

There are other non-trivial zeros due to selection rules. For example for the symmetric irrep
{m}, the SU(3) irrep (ηm − 2, 1) is not allowed.

3. SU (3) multiplicities in trace form involving quadratic and cubic Casimir invariants

Let us begin with a brief discussion of the generators and Casimir invariants of SU(3). The
Lie algebra of U(3) has the generators Cj

i satisfying the commutation relations[
Cj

i , C�
k

] = C�
i δ

j

k − Cj

k δ�
i ; i, j, k, � = 1, 2, 3. (9)

The generators, with definite tensorial rank with respect to SO(3) in SU(3) ⊃ SO(3), of the
Lie algebra of SU(3) are

L+1 = −C2
1 − C3

2 , L−1 = C1
2 + C2

3 , L0 = C1
1 − C3

3 ,

Q2 =
√

6C3
1 , Q1 =

√
3
(
C3

2 − C2
1

)
, Q0 = C1

1 − 2C2
2 + C3

3 , (10)

Q−2 =
√

6C1
3 , Q−1 =

√
3
(
C1

2 − C2
3

)
.

Here we are following [16] with convenient overall factors as to make Lq(q = −1, 0, +1) and
Qq(q = ±1,±2, 0) exact components of SO(3) Racah tensors [17] of ranks 1 and 2. The
commutation relations for Ls and Qs are (see for example equation (117) in [1])

[Lq,Lq ′ ] = −
√

2〈1q1q ′|1q + q ′〉Lq+q ′ ,

[Qq,Qq ′ ] = 3
√

10〈2q2q ′|1q + q ′〉Lq+q ′ , (11)

[Qq,Lq ′ ] = −
√

6〈2q1q ′|2q + q ′〉Qq+q ′ .

The second-order SO(3) scalars that can be constructed using Lq and Qq operators are

L2 = −2L−1L+1 + L0(L0 + 1),

[Q,Q]0
0 = 1√

5
(2Q−2Q2 − 2Q−1Q1 + Q0Q0 + 9L0).

(12)

With these second-order scalars one can construct the SU(3) quadratic Casimir invariant
C2(SU(3)),

C2(SU(3)) = 1
4

(
3L2 +

√
5[Q,Q]0

0

)
(13)

with eigenvalues

〈C2(SU(3))〉(λ,μ) = C2(λ, μ) = λ2 + μ2 + λμ + 3(λ + μ). (14)
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Similarly the third-order SU(3) Casimir invariant C3(SU(3)) is

C3(SU(3)) = 1

72

(√
70[[Q,Q]2,Q]0

0 + 9
√

30[[L,L]2,Q]0
0

)
= 1

72
[12Q−2Q0Q2 − 3

√
6Q−2Q1Q1 − 3

√
6Q−1Q−1Q2 + 6Q−1Q0Q1

− 2Q0Q0Q0 − 27
√

3L−1Q1 − 27
√

3Q−1L+1 + 27L0Q0 + 45Q0

+ 9(
√

6Q−2L+1L+1 − 2
√

3Q−1L0L+1 + 2L−1Q0L+1 + 2L0L0Q0

− 2
√

3L−1L0Q1 +
√

6L−1L−1Q2 −
√

3Q−1L+1 + 5L0Q0

−
√

3L−1Q1 + 3Q0)] (15)

with eigenvalues

〈C3(SU(3))〉(λ,μ) = C3(λ, μ) = (1/9)(λ − μ)(λ + 2μ + 3)(2λ + μ + 3) (16)

as given by Draayer and Rosensteel [18]. Note that C2(λ, μ) = C2(μ, λ) but this is not true
for C3(λ, μ). Finally let us give the formula for the dimension d(λ, μ) of the SU(3) irrep
(λ, μ),

d(λ, μ) = (λ + 1)(μ + 1)(λ + μ + 2)/2. (17)

We will now derive the trace form for the Ds.
With β(λ,μ) labeling the multiple occurrence of a given (λ, μ) irrep in {m} and α(λ,μ)

labeling the different states that belong to a given (λ, μ), we have

[d(λ, μ)]−1〈〈δ(C2(SU(3)) − C2(λ, μ))δ(C3(SU(3)) − C3(λ, μ))〉〉{m}

= [d(λ, μ)]−1
∑

β(λ′ ,μ′),(λ′,μ′),α(λ′ ,μ′)

〈{m}, β(λ′,μ′), (λ
′, μ′), α(λ′,μ′)|

δ(C2(SU(3)) − C2(λ, μ))δ(C3(SU(3)) − C3(λ, μ))|{m}, β(λ′,μ′), (λ
′, μ′), α(λ′,μ′)〉

= [d(λ, μ)]−1
∑

β(λ′ ,μ′),(λ′,μ′),α(λ′ ,μ′)

〈{m}, β(λ′,μ′), (λ
′, μ′), α(λ′,μ′)| (18)

δ(C2(λ
′, μ′) − C2(λ, μ))δ(C3(λ

′, μ′) − C3(λ, μ))|{m}, β(λ′,μ′), (λ
′, μ′), α(λ′,μ′)〉

= [d(λ, μ)]−1
∑

β(λ,μ),α(λ,μ)

1

= D
(λ,μ)

{η},{m}.

Note that 〈〈〉〉 denotes trace (sum of diagonal matrix elements in a given basis). In the first step
we have used, as the trace is invariant under a basis transformation, the basis defined by SU(3)

irreps. In the next step, we have used the action of SU(3) Casimir operators on a SU(3) irrep.
Finally the definition of the delta function (δ(x) = 1 for x = 0 and zero otherwise) is used.
With these, the final result is obtained. Thus D

(λ,μ)

{η},{m} can be expressed as a trace over the m
boson spaces. If the C3(SU(3)) is dropped, then the β summation at the end will involve both
(λ, μ) and (μ, λ) irreps and hence it is not possible to define Ds using only C2(SU(3)). Note
that we have the equality∑

(λ,μ)

D
(λ,μ)

{η},{m}d(λ, μ) = d(N ,m) =
(
N + m − 1

m

)
. (19)

More importantly, it is seen that the trace in equation (18) is positive definite and hence
it can be treated as a bivariate probability density ρ ′(E1, E2) in the two variables E1

and E2, with E1s being the eigenvalues of C2(SU(3)) and E2s being the eigenvalues
of C3(SU(3)). Then the bivariate moments MPQ of ρ ′(E1, E2) are given by MPQ =

5
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[d(λ, μ)]−1〈〈[C2(SU(3))]P [C3(SU(3))]Q〉〉{m}. Our task is to identify a functional form for
this bivariate probability density or more directly for ρ(λ, μ) (note that dE1 dE2 �= dλ dμ)
and hence a statistical law for the Ds. The remaining part of the paper deals with ρ(λ, μ).

4. A statistical law for D
(λ,μ)

{η}, {m} based on U (3) ⊃ U (1) ⊕ U (1) ⊕ U (1)

4.1. Preliminaries

Extending the formulation based on SO(3) ⊃ SO(2) for D(m,L) as discussed in appendix
A, it is possible to derive a statistical law for D

(λ,μ)

{η},{m}. To this end, for U(N ) with
N = (η + 1)(η + 2)/2, we consider the oscillator single particle (sp) states in the (nz, nx, ny)

representation, i.e. we consider (nz(i), nx(i), ny(i)) orbits with i = 1, 2, . . . ,N . Here
nz(i), nx(i) and ny(i) are the number of oscillator quanta for a single particle in z, x

and y directions respectively; nx(i) + ny(i) + nz(i) = η and nz, nx and ny are positive.
For example for η = 4 we have N = 15 and (nz, nx, ny) = (400), (310), (301), (220),

(211), (202), (130), (121), (112), (103), (040), (031), (022), (013) and (004). Now,
distributing m bosons in these sp states in all possible ways gives the number of quanta
f1 = Nz, f2 = Nx and f3 = Ny in z, x and y directions for each distribution (or configuration).
Note that f1 = Nz = ∑N

i=1 minz(i), where mi is the number of bosons in the i-th sp state.
Similarly f2 (or Nx) and f3 (or Ny) can be obtained; f1+f2+f3 = mη. It is possible to generate
all allowed configurations using a program and count the number of configurations giving the
same (f1, f2, f3). Let us call this function d(f1, f2, f3). We have written a programme to
generate d(f1, f2, f3).

For each SU(3) irrep (λ, μ), there are a set of weights (f1, f2, f3) (they are the subgroup
labels in U(3) ⊃ U(1) ⊕ U(1) ⊕ U(1)) that belong to this irrep with the highest one
denoted by (F1, F2, F3) such that λ = F1 − F2, μ = F2 − F3 and F1 + F2 + F3 = mη.
Introducing the operators Oi which increase the variable fi by one unit so that for example
Op

1 g(f1, f2, f3) = g(f1 + p, f2, f3) etc, number of times (λ, μ) irrep appears in {m} is given
by [6, 8]

D
(λ,μ)

{η},{m} =

∣∣∣∣∣∣∣
1 O−1

2 O−2
3

O1
1 1 O−1

3

O2
1 O1

2 1

∣∣∣∣∣∣∣ d(F1, F2, F3). (20)

Equation (20) is exact and it is an extension of equation (A.6). We have verified equation (20)
explicitly for η = 4 and m = 10, 15, 20 using a computer programme we have developed.
Thus equation (20) provides an exact method for generating D

(λ,μ)

{η},{m}. However, unlike the two
methods discussed in section 2, equation (20) allows us to derive smooth functional forms
for D

(λ,μ)

{η},{m}. The clue lies in approximating the function d(F1, F2, F3). To this end, with
γ = f1 − f2 and ν = f2 − f3 we can first recognize that ρd(γ, ν) = d(f1, f2, f3)/d(N ,m)

can be treated as a bivariate probability distribution (so also is ρD(λ, μ) = d(λ,μ)

d(N ,m)
D

(λ,μ)

{η},{m}).
Given the operators N̂z, N̂x and N̂y that generate m particle Nz,Ny and Nx values, the operators
generating the variables γ and ν are γ̂ = N̂z − N̂x and ν̂ = N̂x − N̂y . Clearly, γ̂ and ν̂ are
one-body operators. Therefore, following the results in [19] (see also appendix A), it is seen
that the marginal densities of ρd(γ, ν) for a m boson system with large m value will be in
general close to Gaussian. Therefore a good starting point is to approximate ρd(γ, ν) by a
bivariate Gaussian ρd:G . Then we need the two centroids, two variances and the correlation
coefficient defining ρd:G . Derivations of the formulae for these are as follows.

6
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4.2. Propagation equations for the second-order bivariate moments of ρd(γ, ν)

Starting with the definitions γ̂ = N̂z − N̂x and ν̂ = N̂x − N̂y and applying the symmetries of
N̂i operators and the trace propagation equations given by equations (A.2)–(A.5), we have

〈γ̂ 〉m = m〈γ̂ 〉1 = m〈N̂z − N̂x〉1 = 0, 〈ν̂〉m = m〈ν̂〉1 = 0. (21)

Therefore the operators γ̂ and ν̂ are traceless operators (i.e. their m particle centroids are zero)
and then the marginal variances are

σ 2
γ (m) = 〈γ̂ 2〉m = 〈(N̂z − N̂x)

2〉m = 2
[〈
Ñ2

z

〉m − 〈ÑzÑx〉m
]
,

(22)
σ 2

ν (m) = 〈ν̂2〉m = σ 2
γ (m).

In equation (22) Ñi are traceless N̂i operators, i.e. 〈Ñi〉m = 0. Also used here are the
symmetries of N̂i operators. In the discussion ahead we will also use the result that N̂i and N̂j

commute for any (i, j). Now let us consider the bivariate correlation coefficient ζ defined by

ζ(m) = 〈γ̂ ν̂〉m
σ 2

γ (m)
,

〈γ̂ ν̂〉m = 〈(N̂z − N̂x)(N̂x − N̂y)〉m
= 〈ÑzÑx〉m − 〈Ñ2

z 〉m. (23)

Here we have used the identities 〈ÑzÑx〉m = 〈ÑzÑy〉m = 〈ÑxÑy〉m and
〈
Ñ2

z

〉m = 〈
Ñ2

x

〉m
.

Comparing equations (22) and (23) gives the important result,

ζ(m) = − 1
2 . (24)

To derive the propagation formula for the marginal variances σ 2
γ (m), we need

〈
Ñ2

z

〉m
and

〈ÑzÑx〉m for any m. Propagation equations for these are (see appendix A)〈
Ñ2

z

〉m = m(m + N )

N (N + 1)

〈〈
Ñ2

z

〉〉1
,

(25)
〈ÑzÑx〉m = m(m + N )

N (N + 1)
〈〈ÑzÑx〉〉1.

The one particle traces in equation (25) are obtained as follows. Firstly,

〈〈N̂z〉〉1 =
η+1∑
i=1

(η − i + 1)(i) = N
(

η

3

)
. (26)

Therefore 〈N̂z〉1 = 〈N̂x〉1 = 〈N̂y〉1 = η/3. Note that (η − i + 1) are the eigenvalues of N̂z

and i is the degeneracy of the ith eigenvalue. With this the trace of the square of Ñz over one
particle spaces is

〈〈
Ñ2

z

〉〉1 =
η+1∑
i=1

(
2η

3
+ 1 − i

)2

(i)

= η(η + 1)(η + 2)(η + 3)

36
. (27)

Now we will turn to 〈〈ÑzÑx〉〉1. For this, first note that for a given nz, say η − r , the nx takes
values 0, 1, 2, . . . , r . Therefore

7
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〈〈ÑzÑx〉〉1 =
η∑

i=0

(
2η

3
− i

)⎡⎣ i∑
j=0

(
j − η

3

)⎤⎦
= 1

18

η∑
i=0

(2η − 3i)(i + 1)(3i − 2η)

= −η(η + 1)(η + 2)(η + 3)

72
. (28)

Combining equations (27) and (28) we finally have

σ 2
γ (m) = m(m + N )

N (N + 1)

[
η(η + 1)(η + 2)(η + 3)

12

]
. (29)

For example, for η = 4 and m = 10, 15, 20 the σ 2
γ (m) values are 875/12, 525/4 and 1225/6

respectively. These numbers are verified by numerically generating d(γ, ν).
With the marginal centroids zero, marginal variances given by equation (29) and the

correlation coefficient ζ(m) being − 1
2 , the bivariate Gaussian in γ and ν is

ρd;G(γ, ν) = N0√
3πσ 2

γ (m)
exp

[
− 2

3σ 2
γ (m)

(γ 2 + γ ν + ν2)

]
. (30)

The factor N0 = 3 in equation (30) and this is due to the following. As γ = Nz − Nx and
ν = Nx − Ny , we have ν = (γ − ηm) + 3Nx . Therefore as γ increases in steps of one, ν will
change in steps of three. Thus, when we use only the allowed values of (γ, ν) in applying
equation (30), we need the factor N0 = 3 for proper normalization. As we shall see ahead in
section 5, although equation (30) is a good starting point, we do need first two corrections to
this formula.

4.3. Formula for D
(λ,μ)

{η},{m} from the bivariate Gaussian form for ρd;G(γ, ν)

Starting with the bivariate Gaussian form given by equation (30) and applying equation (20),
we can derive a smooth formula for ρD(λ, μ). To this end we will follow [6] and replace the
difference operators On

i by differential operators using the Taylor expansion,

On
i = 1 + n

∂

∂F1
+

n2

2!

(
∂

∂F1

)2

+ · · · . (31)

For better accuracy, the determinant in equation (20) is transformed so that the arguments in
the Taylor series become as small as possible. Toward this end we use (see for example [6]))∣∣∣∣∣∣

1 O−1
2 O−2

3

O1
1 1 O−1

3

O2
1 O1

2 1

∣∣∣∣∣∣ = O1
1O−1

3

∣∣∣∣∣∣
O−1

1 O−1
2 O−1

3

1 1 1
O1

1 O1
2 O1

3

∣∣∣∣∣∣ . (32)

Truncating the Taylor expansion in equation (31) to second order we get, after some algebraic
manipulations,

O1
1O−1

3

∣∣∣∣∣∣
O−1

1 O−1
2 O−1

3

1 1 1
O1

1 O1
2 O1

3

∣∣∣∣∣∣ = O1
1O−1

3

∣∣∣∣∣∣∣∣
1 1 1
∂

∂F1

∂
∂F2

∂
∂F3(

∂
∂F1

)2 (
∂

∂F2

)2 (
∂

∂F3

)2

∣∣∣∣∣∣∣∣ . (33)

Changing ρd;G(γ, ν) in (30) to ρd(f1, f2, f3), we have

ρd(f1, f2, f3) = 1√
3πσ 2

γ (m)
exp

⎡⎣− 2

3σ 2
γ (m)

⎛⎝ 3∑
i=1

f 2
i −

3∑
i<j

fifj

⎞⎠⎤⎦ . (34)

8
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With this,∣∣∣∣∣∣∣∣
1 1 1
∂

∂F1

∂
∂F2

∂
∂F3(

∂
∂F1

)2 (
∂

∂F2

)2 (
∂

∂F3

)2

∣∣∣∣∣∣∣∣
1√

3πσ 2
γ (m)

exp

⎡⎣− 2

3σ 2
γ (m)

⎛⎝ 3∑
i=1

F 2
i −

3∑
i<j

FiFj

⎞⎠⎤⎦

=

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1

− 2
3σ 2

γ (m)
(2F1 − F2 − F3) − 2

3σ 2
γ (m)

(2F2 − F1 − F3) − 2
3σ 2

γ (m)
(2F3 − F1 − F2){

4
9σ 4

γ (m)
(2F1 − F2 − F3)

2
{

4
9σ 4

γ (m)
(2F2 − F1 − F3)

2
{

4
9σ 4

γ (m)
(2F3 − F1 − F2)

2

− 4
3σ 2

γ (m)

}
− 4

3σ 2
γ (m)

}
− 4

3σ 2
γ (m)

}

∣∣∣∣∣∣∣∣∣∣∣∣
× 1√

3πσ 2
γ (m)

exp

⎡⎣− 2

3σ 2
γ (m)

⎛⎝ 3∑
i=1

F 2
i −

3∑
i<j

FiFj

⎞⎠⎤⎦

= −23

33σ 6
γ (m)

∣∣∣∣∣∣∣∣∣∣
0 0 1

3(F1 − F2) 3(F2 − F3) (2F3 − F1 − F2)

3(F1 − F2) 3(F2 − F3)

×(F1 + F2 − 2F3) ×(F2 + F3 − 2F1) (2F3 − F1 − F2)
2 − 3σ 2

γ (m)

∣∣∣∣∣∣∣∣∣∣
× 1√

3πσ 2
γ (m)

exp

⎡⎣− 2

3σ 2
γ (m)

⎛⎝ 3∑
i=1

F 2
i −

3∑
i<j

FiFj

⎞⎠⎤⎦
= 23

√
3πσ 8

γ (m)
(F1 − F2)(F2 − F3)(F1 − F3) exp

⎡⎣− 2

3σ 2
γ (m)

⎛⎝ 3∑
i=1

F 2
i −

3∑
i<j

FiFj

⎞⎠⎤⎦ .

(35)

Now applying equation (32) gives

O1
1O−1

3

∣∣∣∣∣∣
O−1

1 O−1
2 O−1

3

1 1 1
O1

1 O1
2 O1

3

∣∣∣∣∣∣ 1√
3πσ 2

γ (m)
exp

⎡⎣− 2

3σ 2
γ (m)

⎛⎝ 3∑
i=1

F 2
i −

3∑
i<j

FiFj

⎞⎠⎤⎦
= 23

√
3πσ 8

γ (m)
(F1 − F2 + 1)(F1 − F3 + 2)(F2 − F3 + 1)

× exp − 2

3σ 2
γ (m)

[
3
{
(F1 + 1)2 + F 2

2 + (F3 − 1)2
} − (∑3

1 Fi

)2]
2

. (36)

Replacing λ = F1 − F2 and μ = F2 − F3 in equation (36) we have finally

D
(λ,μ)

{η},{m} = 3

(
N + m − 1

m

)
23

√
3πσ 8

γ (m)
(λ + 1)(μ + 1)(λ + μ + 2)

× exp

(
− 2

3σ 2
γ (m)

{(λ + μ + 3)(λ + μ) − λμ + 3}
)

= 3

(
N + m − 1

m

)
16√

3πσ 8
γ (m)

d(λ, μ) exp

(
− 2

3σ 2
γ (m)

{C2(λ, μ) + 3}
)

. (37)

9
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This formula was reported first, with incomplete discussion, by Kanestrom [8]. The factor 3
in equation (37) was not mentioned in [8] and the origin of this factor was discussed following
equation (30). It is important to stress that we have identified the definition for σ 2

γ (m) while
Kanestrom treated it as a free parameter. Besides this we have derived a simple propagation
formula for σ 2

γ (m). Also we can extend the propagation method to higher order bivariate
cumulants of ρd . With these we can add corrections to equation (37). Most important is the
asymmetry in λ and μ seen in exact D

(λμ)

{η},{m} while it is absent in the above formula. Let
us now consider the third- and fourth-order bivariate moments and they will account for the
asymmetry as we shall show now.

5. D
(λ,μ)

{η}, {m} with quadratic and cubic Casimir invariants of SU (3)

5.1. Result with third-order bivariate cumulants correction to the Gaussian form of ρd(γ, μ)

By symmetry argument it is easy to see that 〈γ 3〉m = 〈(Ñz − Ñx)
3〉m = 0 and therefore

the cumulants k30(m) = k03(m) = 0. Now we will consider the k21(m) cumulant. Firstly
k21(m) = 〈γ 2ν〉m/σ 3

γ (m). Also from equation (A.4),

〈γ 2ν〉m = m(N + m)(N + 2m)

N (N + 1)(N + 2)
〈〈γ 2ν〉〉1,

〈〈γ 2ν〉〉1 = 〈(Ñz − Ñx)
2(Ñx − Ñy)〉1

= 〈〈
Ñ3

z

〉〉1 − 3
〈〈
Ñ2

z Ñx

〉〉1
+ 2〈〈ÑzÑxÑy〉〉1. (38)

Here in the second equality we have used the symmetries of
〈
Ñ3

i

〉
and

〈
Ñ2

i Ñj

〉
. The one particle

averages in equation (38) follow by extending equations (27) and (28). Then,

〈〈
Ñ3

z

〉〉1 =
η+1∑
i=1

(
2η

3
+ 1 − i

)3

(i)

= η(η + 1)(η + 2)(η + 3)(2η + 3)/540,〈〈
Ñ2

z Ñx

〉〉1 =
η∑

i=0

(
2η

3
− i

)2
⎡⎣ i∑

j=0

(
j − η

3

)⎤⎦
= −η(η + 1)(η + 2)(η + 3)(2η + 3)/1080,〈〈

ÑzÑxÑy

〉〉1 =
η∑

i=0

(
2η

3
− i

)⎡⎣ i∑
j=0

(
j − η

3

) (
i − j − η

3

)⎤⎦
= η(η + 1)(η + 2)(η + 3)(2η + 3)/540. (39)

Combining equations (38), (39) and (29) we obtain the following formula for k21(m):

k21(m) =
√

3N (N + 1)

η(η + 1)(η + 2)(η + 3)m(N + m)

[
(2η + 3)(N + 2m)

5(N + 2)

]
. (40)

For example for η = 4 (then N = 15) and m = 20, equation (40) gives k21(m) =
(
√

3/2)(121/595) and we have verified this by numerically generating d(γ, ν). It is easy to see
that k12(m) = −k21(m). In many examples it is found that k21 ∼ 0.25 and therefore the third-
order cumulants generate important corrections to equation (37). Employing the bivariate
ED (Edgeworth) expansion given in appendix B, which has well understood convergence

10
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properties (see [20, 21]), and using the results k30 = k03 and k21 = −k12, we have the
following expression for ρd with first correction:

ρd;ED(γ, ν) = ρd;G(γ, ν)

[
1 +

k21

2
{He21(γ, ν) − He12(γ, ν)}

]
. (41)

The γ and ν are standard variables and He21(x, y) for standard x and y is

He21(x, y) = (x − ζy)2(y − ζx)

(1 − ζ 2)3
+ 2ζ

x − ζy

(1 − ζ 2)2
− y − ζx

(1 − ζ 2)2
. (42)

Similarly He12(x, y) is defined with x ↔ y. Using the fact that for the variables (γ, ν), the
correlation coefficient is − 1

2 will simplify equation (41) to give

ρd;ED(γ, ν) = ρd;G(γ, ν)

[
1 +

4k21

27σ 3
γ (m)

(2γ + ν)(2ν + γ )(γ − ν)

]
. (43)

Note the appearance of the term that has a structure close to that of C3(λ, μ) and this is in line
with the expectation that C3 generates the asymmetry in the D-function with respect to λ and
μ. Now applying equation (33) and carrying out the simplifications indeed generate a term
containing C3. The resulting remarkably simple and easy to understand formula with k21 and
k12 corrections for the D function is

D
(λμ)

{η},{m} = 3

(
N + m − 1

m

)
16√

3πσ 8
γ (m)

d(λ, μ)

× exp

(
− 2

3σ 2
γ (m)

{C2(λ, μ) + 3}
)[

1 +
4k21(m)

3σ 3
γ (m)

C3(λ, μ)

]
. (44)

5.2. Result with fourth-order bivariate cumulants correction to the Gaussian form of
ρd(γ, μ)

Going beyond the first correction discussed in the previous section, using the ED expansion
given by equation (B.4) we can include also the second-order corrections. For this we need
the cumulants krs or the central moments Mrs = 〈γ rνs〉m = 〈(Ñz − Ñx)

r (Ñx − Ñy)
s〉m with

r + s = 4. Firstly, by symmetry arguments it is easy to see that k40 = k04 and k31 = k13. For
example

σ 4
γ (m)k40(m) = 2

〈
Ñ4

z

〉m − 8
〈
Ñ3

z Ñx

〉m
+ 6

〈
Ñ2

z Ñ2
x

〉m − 3σ 4
γ (m).

Similarly writing the bivariate cumulants k22 and k31 in terms of the bivariate moments using
equation (B.6), substituting ζ = −1/2 and using the symmetries of the traces involving
Ñi operators, it is seen that k22 = k40/2 and k13 = −k40/2. Therefore all we need is the
propagation formula for k40(m). To this end we use equation (A.5) and then we need

〈〈(Ñz − Ñx)
4〉〉1 = 2

〈〈
Ñ4

z

〉〉1 − 8
〈〈
Ñ3

z Ñx

〉〉1
+ 6

〈〈
Ñ2

z Ñ2
x

〉〉1
.

These one particle traces are evaluated using the procedure followed in the previous sections
and then

〈〈(Ñz − Ñx)
4〉〉1 = 1

60η(η + 1)(η + 2)(η + 3)(2η2 + 6η − 3). (45)

Now the propagation equation for k40(m) is

k40(m) =
[
N (N + 1)

m(N + m)
+ 6

(m − 1)(N + m + 1)N (N + 1)

m(N + m)(N + 2)(N + 3)

]
12(2η2 + 6η − 3)

5η(η + 1)(η + 2)(η + 3)

+ 3

[
(m − 1)(N + m + 1)N (N + 1)

m(N + m)(N + 2)(N + 3)
− 1

]
. (46)

11
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Thus we can calculate k40 for any m. Equation (B.4) and the symmetries of krs will give the
second-order correction to be (we will denote this by X without the Gaussian pre-factor),

X = k40
[

1
24 {He40(γ, ν) + He04(γ, ν)} − 1

12 {He31(γ, ν) + He13(γ, ν)} + 1
8He22(γ, ν)

]
+ k2

21

[
1
8 {He42(γ, ν) + He24(γ, ν)} − 1

4He33(γ, ν)
]
. (47)

Here we used the result k30 = k03 = 0 and the Hermite polynomials He(−−) followed from
equation (B.5). Substituting ζ = −1/2 and simplifying the Hermite polynomials will give
the following pleasing result:

X = 1
27k40[2X2(X2 − 6) + 9] + 4

729k2
21

[
2X2

3 − 54X2
2 + 81(2X2 − 1)

]
,

(48)
X2 = γ2 + γν + ν2, X3 = (γ − ν)(2γ + ν)(γ + 2ν).

Note the appearance of the terms that have a structure close to that of C2(λ, μ) and C3(λ, μ)

and this is in line with the expectation that the D-function should be a function of only these
two invariants. Now applying equation (33) and carrying out the simplifications we obtain the
D-function including second-order corrections,

D
(λμ)

{η},{m} = 3

(
N + m − 1

m

)
16√

3πσ 8
γ (m)

d(λ, μ)

× exp

(
− 2

3σ 2
γ (m)

{C2(λ, μ) + 3}
)[

1 +
4k21(m)

3σ 3
γ (m)

C3(λ, μ)

+

{
8k2

21(m)

9σ 6
γ (m)

C2
3(λ, μ) − 2

(
4k2

21(m) − k40(m)
)

27σ 4
γ (m)

[C2(λ, μ) + 3]2

+
10

(
2k2

21(m) − k40(m)
)

9σ 2
γ (m)

[C2(λ, μ) + 3] +

(
−40

9
k2

21(m) +
10

3
k40

)}]
. (49)

Equation (49) is the main result of this paper and it is expected to work well for λ,μ �
3σγ (m).

5.3. Numerical tests of the statistical formula

In order to test the statistical formulae given by equations (37), (44) and (49), we have
carried out numerical calculations for η = 4,m = 20 and 40, η = 5,m = 24 and
η = 6,m = 18. Firstly, it is seen from exact results (obtained using the methods
described in section 2) that the multiplicities for (λ, μ) and (μ, λ) irreps are in general
quite different. For example for [(0, 30), (30, 0)], [(2, 32), (32, 2)] and [(4, 34), (34, 4)]
irreps they are (64 124, 127 293), (133 652, 329 111) and (141 146, 447 569) respectively for
η = 5,m = 24. This asymmetry in the multiplicities will not follow from the bivariate
Gaussian approximation given by equation (37) which contains only the C2(λ, μ) term that is
symmetric in λ and μ. Thus C3(λ, μ), which is asymmetric in λ and μ, is needed for proper
description of the multiplicities. We have seen in the previous section that the introduction
of Edgeworth corrections to the bivariate Gaussian naturally introduces terms with C3(λ, μ).
Using the formulae given by equations (29), (40) and (46) numerical values for the variance
σ 2

ν (m) and the cumulants k21(m) and k40(m) for different values of η and m are calculated and
for some example results are shown in table 1; for completeness the total dimension d(N ,m)

is also given. It is clearly seen from the examples in table 1 that k21 ∼ 0.25 and k40 ∼ 0.05.
The variances and the cumulants in table 1 are used to construct D(λ,μ)

{η},{m} and for the example of
η = 4,m = 40, the results are shown in figure 1 as 3D histograms. Here the exact results are

12
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Table 1. Marginal variance σ 2
γ (m) and the bivariate cumulants k21(m) and k40(m) for ρd(γ, ν).

η m d(N ,m) σ 2
γ (m) k21(m) k40(m)

4 20 1391 975 640 1225
6

121
√

3/2
595

141
2975

4 40 3245 372 870 670 1925
3

19
√

33/7
170

1956
32725

5 24 1761 039 350 070 3600
11

13
√

11
200

23
480

6 18 1715 884 494 940 7452
29

8
√

29/23
45

982
32085

compared with Edgeworth corrections to second order, i.e. equation (49). The histogram plots
are constructed by first binning the numerically obtained for D

(λ,μ)

{η},{m} with bin size 4 for both λ

and μ. The numerical value of the D-function in each bin in then divided by the area 16. With
the introduction of second-order Edgeworth corrections we see that there is good agreement
between the 3D histogram plots. However to bring out finer differences, in figures 2–4 we show
D versus μ for various λ values and the results are for (η = 4,m = 40), (η = 5,m = 24)

and (η = 6,m = 18) respectively. From these figures it is clearly seen that in all the
cases the bivariate Gaussian results given by equation (37) deviate from the exact results
except for very small values of λ and μ. When the first correction (from k21) is added to
the Gaussian approximation, the agreement between the exact and the approximate results
improves significantly. For η = 4 and m = 40, there is good agreement for λ,μ � 50. From
the numerical values listed in table 1 we see that for this example σγ (m) ∼ 25. In general, the
values of λ and μ up to which there is agreement between the exact and approximate densities
is ∼2σγ (m); for the (η = 5,m = 24) and (η = 6,m = 18) examples, σγ (m) are ∼18 and
∼16, respectively. Addition of the second-order corrections to the Gaussian approximation
results in good agreement between the exact and approximate densities. From figure 2 it is
seen that for (η = 4,m = 40), the agreement is good for up to λ,μ � 3σγ (m). Similar
conclusion can be drawn from figures 3 and 4 for (η = 5,m = 24) and (η = 6,m = 18),
respectively. It is important to add that for the three η = 5,m = 24 examples mentioned
in the beginning of this section for the multiplicities of [(0, 30), (30, 0)], [(2, 32), (32, 2)]
and [(4, 34), (34, 4)], equation (49) gives values (64 953, 124 740), (138 789, 322 282) and
(150 894, 434 969) respectively. These are in close agreement with exact values. Thus we can
conclude that the analytical expression given by equation (49) is a good asymptotic expression
for D

(λ,μ)

{η},{m}.

6. Conclusions

A statistical law for the multiplicities D
(λ,μ)

{η},{m} of the SU(3) irreps (λ, μ) in the reduction of a
totally symmetric irreducible representation {m} of U(N ),N = (η + 1)(η + 2)/2 is derived
in terms of the quadratic and cubic invariants of SU(3) for the first time in this paper. To this
end, the first three terms of an asymptotic expansion, based on the ED expansion well known
in statistics, are determined from first principles. They are given in equations (37), (44) and
(49). In addition, simple formulae in terms of m and η, for all the parameters in the expansion
are derived. They are given in equations (29), (40) and (46). Numerical tests with large m
and η = 4, 5 and 6 show good agreement between exact results and the statistical formula
with second-order corrections. Although we have restricted ourselves to boson systems, it
is possible to extend the results of the paper to fermion systems, i.e. antisymmetric irreps
of U(N ) and also for a general U(N ) irrep (for example, they appear with the spin–isospin
SU(4) symmetry or just with spin in nuclei [9, 12]). Toward this end we need to derive new
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Figure 1. (a) 3D histogram for D
(λ,μ)
{η},{m} from exact calculation. (b) 3D histogram for D

(λ,μ)
{η},{m}

calculated using the analytical result for bivariate Gaussian approximation with Edgeworth
corrections up to second order as given by equation (49).

propagation formulae for the bivariate cumulants krs with r + s � 4 and this will be addressed
elsewhere.

The study carried out in this paper represents a step forward in the subject of ‘statistical
group theory’ [3, 22]. We hope that the results reported here, obtained nearly 30 years after
Kanestrom’s [8] first attempt, will prompt further studies in statistical group theory and we
expect more applications of this topic in physics in future.
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Figure 2. Plot of D
(λ,μ)
{η},{m} versus μ for different values of λ with η = 4 and m = 40. Here the

solid curve corresponds to the exact result, the dotted curve corresponds to the bivariate Gaussian
approximation, i.e. equation (37), the dashed curve corresponds to the bivariate Gaussian with
first-order Edgeworth correction, i.e. equation (44) and the long dashed curve corresponds to the
bivariate Gaussian approximation with second-order Edgeworth corrections, i.e. equation (49).

Appendix A.

Given a k-body operator O(k), its m particle average is

〈O(k)〉m = {d(m)}−1〈〈O(k)〉〉m = {d(m)}−1
∑

α

〈mα|O(k)|mα〉

=
(

m

k

)
〈O(k)〉k . (A.1)

In equation (A.1), d(m) is the dimension of the m particle space for the particles occupying
N sp states. Note that

(
m

k

)
has the correct particle rank, 〈O(k)〉m = 0 for m < k and

〈O(k)〉m = 〈O(k)〉k for m = k. Let us consider the averages of powers of a one-body
Hamiltonian h(1) over a m boson space. We will consider only diagonal sp energies εi ,
i.e. h(1) = ∑N

i=1 εi n̂i where |i〉 are sp states and n̂i are number operators for the states i.
Decomposing hr(1) into (0 + 1 + 2 + · · · + r)-body operators and applying equation (A.1) to

15
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Figure 3. Same as figure 2 but for η = 5 and m = 24.

each piece separately, trace propagation equations for 〈hr(1)〉m can be derived with inputs
containing εis explicitly. For r = 1–4 the propagation equations are [19]

〈h(1)〉m = mε, ε = {N }−1
N∑

i=1

εi . (A.2)

〈h̃2(1)〉m = m(N + m)

N (N + 1)

N∑
i=1

ε̃2
i , ε̃i = εi − ε, h̃(1) =

N∑
i=1

ε̃i n̂i . (A.3)

〈h̃3(1)〉m = m(N + m)(N + 2m)

N (N + 1)(N + 2)

N∑
i=1

ε̃3
i . (A.4)
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〈h̃4(1)〉m = m(N + m)

N (N + 1)

N∑
i=1

ε̃4
i +

m(m − 1)(N + m)(N + m + 1)

N (N + 1)(N + 2)(N + 3)

⎡⎣3

( N∑
i=1

ε̃2
i

)2

+ 6
N∑

i=1

ε̃4
i

⎤⎦ .

(A.5)

Note that 〈h(1)〉m gives the centroid of ρm(E) = 〈δ(h(1) − E)〉m, the m-particle density
of states. Similarly σ(m) =

√
〈h̃2(1)〉m is the width of ρ(E). For symmetric εis clearly

〈h̃3(1)〉m = 0 and the shape of ρ(E) is then largely decided by the excess parameter
γ2(m) = [〈h̃4(1)〉m/σ 4(m)] − 3. For non-singular spectra (i.e. for h(1) with |γ2(1)| � 1), it
is seen (by applying equations (A.3) and (A.5)) that γ2(m) ∼ 0 in the dense limit, i.e. in the
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limit m → ∞,N → ∞ and m/N → ∞. Therefore for dense non-interacting boson systems
there is central limit theorem (CLT) action giving Gaussian density of states [19]. Now we
will apply this result and equations (A.2)–(A.5) to derive statistical laws for D(m,L).

Let us consider a system of bosons carrying angular momenta (�1, �2, . . . , �r ). Then
the sp spectrum for the �z operator consists of k [k = 2{ max(�1, �2, . . . , �r )} + 1]
number of �z eigenvalues mzi

, each with degeneracy di . For example for (sdg)m system,
mzi

= −4,−3,−2,−1, 0, 1, 2, 3, 4 with di = 1, 1, 2, 2, 3, 2, 2, 1, 1 respectively. Now
distributing a given number of bosons m in the �z orbits in all possible ways, the degeneracy
D(m,M) for a given total Lz eigenvalue M is easy to obtain. Then the simple difference
formula

D(m,L) = D(m,M = L) − D(m,M = L + 1) (A.6)

gives the fixed-L dimension D(m,L) or equivalently the multiplicity of the irrep [L] of SO(3)

in the reduction of the irrep {m} of U(N ). Recognizing that D(m,M)/d(m) is the same as
the density of Lz eigenvalues in m boson space, i.e. ρm(M) = {d(m)}−1〈〈δ(Lz − M)〉〉m,
statistical laws for D(m,M) and hence, via equation (A.6), for D(m,L) can be obtained.
As mzi

are additive, ρm will be a m-fold convolution of ρ1 and hence there is CLT action in
generating ρm(M). Then

D(m,M) = d(m)√
2πσL(m)

exp −
(

M2

2σ 2
L(m)

)
,

(A.7)

σ 2
L = 〈

L2
z

〉m = m(N + m)

N (N + 1)

k∑
i=1

m2
zi
di .

Equation (A.7) is derived using equation (A.3) by noting that 〈Lz〉m = 0. Using equation
(A.7), the statistical law for D(m,L) is

D(m,L) = D(m,M = L) − D(m,M = L + 1)

� − ∂

∂L
D
(

m,M = L +
1

2

)
CLT−→

(
N + m − 1

m

)
(2L + 1)√
8πσ 3

L(m)
exp −

(
L + 1

2

)2

2σ 2
L(m)

. (A.8)

One can go beyond the Gaussian approximation in (A.7) and improve equation (A.8) by adding
Edgeworth corrections; see [1, 20] for univariate Edgeworth expansion. In addition to (A.8),
statistical laws for D(L) with fixed particle number in each �-orbit or groups of such orbits
(for example sd and pf in sdpf IBM) can be derived. As an important by product this gives
not only fixed-L but also fixed-L and parity dimensions; see [1].

Appendix B.

Given the bivariate Gaussian, in terms of the standardized variables x̂ and ŷ,

ηG (̂x, ŷ) = 1

2π
√

(1 − ζ 2)
exp

{
− x̂2 − 2ζ x̂ŷ + ŷ2

2(1 − ζ 2)

}
(B.1)

the bivariate ED expansion for any bivariate distribution η(̂x, ŷ) follows from

η(̂x, ŷ) = exp

⎧⎨⎩ ∑
r+s�3

(−1)r+s krs

r!s!

∂r

∂x̂r

∂s

∂ŷs

⎫⎬⎭ ηG (̂x, ŷ). (B.2)
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Assuming that the bivariate reduced cumulants kr+s behave as krs
∝ ϒ−(r+s−2)/2 where ϒ is a

system parameter, and collecting in the expansion of equation (B.2) all the terms that behave
as ϒ−P/2, P = 1, 2, . . ., we obtain the bivariate ED expansion. Then [20, 21],

ηED(̂x, ŷ) = ηG (̂x, ŷ)

⎧⎨⎩1 +
∞∑

P=1

⎡⎣∑
[P ]

∑
{∏m

i=1(piqi )
πi }[

m∏
i=1

{
kpiqi

pi!qi!

}πi 1

πi!

]
He∑piπi ,

∑
qiπi

(̂x, ŷ)

]}
. (B.3)

In equation (B.3), [P ] are the partitions of the integer P and the corresponding bipartitions∏m
i=1(piqi)

πi are defined as follows. With [P ] = [P1, P2, . . . , P�], P1 � P2 � · · · �
P� > 0, generate all possible [(p1q1)(p2q2) · · · (p�q�)] such that pi + qi = Pi + 2 and
pi, qi � 0. If (piqi) is repeated πi times, the bipartition is written as

∏m
i=1(piqi)

πi =
[(p1q1)

π1(p2q2)
π2 · · · (pmqm)πm]. Note that

∑m
i=1 πi = �. The bivariate ED expansion to

order P = 2 is

ηbiv−ED(̂x, ŷ) =
{

1 +

(
k30

6
He30(̂x, ŷ) +

k21

2
He21(̂x, ŷ)

+
k12

2
He12(̂x, ŷ) +

k03

6
He03(̂x, ŷ)

)
+

({
k40

24
He40(̂x, ŷ) +

k31

6
He31(̂x, ŷ)

+
k22

4
He22(̂x, ŷ) +

k13

6
He13(̂x, ŷ) +

k04

24
He04(̂x, ŷ)

}
+

{
k2

30

72
He60(̂x, ŷ) +

k30k21

12
He51(̂x, ŷ)

+

[
k2

21

8
+

k30k12

12

]
He42(̂x, ŷ)

+

[
k30k03

36
+

k12k21

4

]
He33(̂x, ŷ)

+

[
k2

12

8
+

k21k03

12

]
He24(̂x, ŷ) +

k12k03

12
He15(̂x, ŷ)

+
k2

03

72
He06(̂x, ŷ)

})}
ηG (̂x, ŷ). (B.4)

The bivariate Hermite polynomials Hem1m2 (̂x, ŷ) in equation (B.4) are generated by

Hem1m2 (̂x, ŷ) = [ηG (̂x, ŷ)]−1(−1)m1+m2
∂m1

∂x̂m1

∂m2

∂ŷm2
ηG (̂x, ŷ). (B.5)

Note that Hem1m2 (̂x, ŷ) = Hem2m1 (̂y, x̂). For completeness, we give here the bivariate
cumulants Krs for r + s � 4 in terms of the central moments Mr ′+s ′ [20],

K30 = M30

K21 = M21

K40 = M40 − 3M2
20

K31 = M31 − 3M20M11

K22 = M22 − M20M02 − 2M2
11

(B.6)
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Note that Krs → Ksr with Mr ′s ′ → Ms ′r ′ . Similarly K20 = σ 2
20 = M20 and K02 = σ 2

02 =
M02. The reduced cumulants krs = Krs/[{K20}r/2{K02}s/2].
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